ПАПIBIA UПIVERSITY OF SCIEПCE AחD TECHחOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES SCHOOL OF NATURAL AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS, STATISTICS AND ACTUARIAL SCIENCE

QUALIFICATION: Bachelor of science ; Bachelor of science in Applied Mathematics and Statistics	
QUALIFICATION CODE: 07BSAM	LEVEL: 6
COURSE CODE: FIM601S	COURSE NAME: FINANCIAL MATHEMATICS 2
SESSION: JULY 2023	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

SECOND OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER	DrV. Katoma
	Mrs. H.Y Nkalle
MODERATOR:	Prof. A.S. Eegunjobi

INSTRUCTIONS

- Answer ALL the questions in the booklet provided.
- Show clearly all the steps used in the calculations.
- All written work must be done in blue or black ink and sketches must be done in pencil.

PERMISSIBLE MATERIALS

- Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

Question 1 [25]

1.1 What is derivative? Mention two (2) purposes of derivatives.
[3]
1.2 Mention four (4) elements under fixed interest government borrowings.
[4]
1.3 Suppose a stock that pays no dividend is worth $N \$ 60.00$. The annual compounding interest rate is 5%. What is the one-year forward price of the stock?
1.4 Consider a Put Option with a strike of $N \$ 500.00$.
(a) What would be the payoff to the buyer if the spot price at the expiration date is $N \$ 550.00$?
(b) What would be the payoff to the buyer if the spot price at the expiration date is N\$ 450.00?
1.5 Consider a 3×9 FRA for $£ 2000.00$ with an FRA rate of 5%. Suppose the reference rate is LIBOR and the 6 -month LIBOR on the effective date is 6%. Assume ACT/360 and the loan is for a period of 120 days. Find how much the borrower receives from the lender on the effective date.

Question 2 [25]

2.1 Consider the cash-flow sequences $e=\left(e_{0}, \ldots, e_{n}\right)$ and $m=\left(m_{0}, \ldots, m_{n}\right)$. When is the cashflow " e " preferable to " m "?
2.2 Consider the net cash flow sequences
$\boldsymbol{A}=(50,51,-4), \boldsymbol{B}=(50,528,-22)$, at time $t=0,1,2$. Suppose the net present value for \mathbf{A} is 108 and that of \mathbf{B} is 594 at time 2. Find the internal rate of return for each outlay. Suppose the interest of both cash flows is 7%, which one is a more viable investment?
2.3 VK Investment cc has an existing debt of $\mathbf{N} \$ 2000000$ on which it makes annual payments at an annual effective rate of LIBOR plus 0.5%. VK Investment cc decides to enter a swap with a notional amount of $N \$ 2000000$ on which it makes annual payments at a fixed annual effective rate of 3% in exchange for receiving annual payments at the annual effective LIBOR rate. The annual effective LIBOR rates over the first and second years of the swap contract are 2.5% and 4% respectively. VK Investment cc does not make or receive any other payments. Calculate the net interest payment that VK Investment cc makes in the second year.
2.4 Explain the dangers of derivatives

Question 3 [25]

3.1 Suppose a certificate of deposit is issued with a face value of $\mathrm{N} \$ 500000.00$ and a coupon of 6% for 90 days. After 30 days, its yield has fallen to 5.75%. What is the price?
3.2 Consider the cash flow sequence, $a=(5,9,20,4,2), b=(6,7,3,1,36)$ at time $t=$ $0, \ldots, 4$. Find the Net Present Value (NPV) of the cash flow assuming an interest rate of 7%.
3.3 Suppose a loan size of l_{0} is repaid by $n m$ equal installments of size x at times
$\frac{1}{m}, \frac{2}{m}, \ldots, \frac{n m}{m}=n$. Suppose the interest rate charged is $i \%$ per annum effective. Find an expression for the capital repayment for the $k^{\text {th }}$ installment.
3.4 Calculate the present value of an annuity of amount $\mathbf{N} \$ 100.00$ paid annually for 5 years at the rate of interest of 9%.

Question 4 [25]

4.1 An investment of $N \$ 200.00$ returns $N \$ 120.00$ at the end of $1^{\text {st }}$ year and $N \$ 100.00$ at the end of $2^{\text {nd }}$ year. What is the internal rate of return (IRR)?
4.2 Explain the difference between a negotiable and non-negotiable financial instrument and give an example
4.3 Frans is considering a project which requires an amount of $N \$ 3000.00$ and another amount of $N \$ 1000.00$ after one year. In two years', time, when the project ends, she expects an inflow of $N \$ 4500.00$. what is the internal rate of return (IRR) of this project? Is the above Investment profitable? Assume that Frans can lend and borrow at the same fixed rate of 7.13% per annum.
4.4 Consider the following two cash-flow sequences:

Time (Year)	0	1	2	3
Project A	-80	96	1	5
Project B	-80	10	10	90

Find the Internal Rate of Return (IRR) of project A and Project B. And show that $\operatorname{IRR}(A)>$ $\operatorname{IRR}(B)$.

